A Framework for Integrating Network Information into
Distributed Iterative Solution of Sparse Linear Systems *

Devdatta Kulkarni and Masha Sosonkina

University of Minnesota, Duluth, MN 55812 USA
{kulk0015, masha}@d.umn.edu

Abstract. Recently, we have proposed a design of an easy-to-use network information dis-
covery tool that can interface with a distributed application non-intrusively and without
incurring much overhead. The application is notified of the network changes in a timely
manner and may react to the changes by invoking the adaptation mechanisms encapsulated
in notification handlers. Here we describe possible adaptations of a commonly used scientific
computing kernel, distributed sparse large-scale linear system solution code.

Keywords: balancing computation communication, network information collection

1 Introduction

Distributing computation and communication resources is already a well-established way of solving
large-scale scientific computing tasks. Communication library standards, such as Message Passing
Interface (MPI) [13], make applications portable across various distributed computing platforms.
However, for high-performance applications in distributed environments, the efficiency and ro-
bustness are difficult to attain due to the varying distributed resource — such as communication
throughput and latency — availability at any given time. This problem is especially acute in com-
putational grids, in which the resource pool itself may vary during the application execution. One
way to handle this situation is to incorporate into application execution run-time adaptive mech-
anisms, which may complement the static (compile-time) adjustments. At present, however, there
is a lack of easy-to-use tools for the application to learn the network information and to request
particular network resources dynamically. It is desirable to have a mechanism that provides the
network information transparently to the application programmer or user, so that the burden of
handling the low level network information is shifted to a network developer. With a knowledge
of network performance, the application may adapt itself to perform the communication more effi-
ciently. The adaptation features are, of course, application-specific. For a scientific application, it
may be beneficial to perform more local computations (iterations) waiting for the peer processors.
This paper presents a general way to incorporate the network information and adaptation proce-
dures into an application, that can be used by a wide range of scientific applications. Section 3
provides an overview of our design and implementation of the Network Information Collection
and Application Notification (NICAN) tool [15]. It will be used to notify the chosen application
of the changes in network status. In Section 4, we outline the distributed sparse linear system
solution code used in the experiments. Specifically, the application under consideration is Parallel
Algebraic Multilevel Solver (pARMS) [5], developed at the University of Minnesota and shown to
be effective for solving large sparse linear systems. Section 5 describes an adaptation scenario for
PARMS invoked in response to certain network conditions. We summarize the work in Section 7.

* This work was supported in part by NSF under grants NSF/ACI-0000443 and NSF/INT-0003274, and
in part by the Minnesota Supercomputing Institute

2 Related Work

Providing network information to distributed applications has been widely recognized as an impor-
tant task. Remos [6] makes available the runtime network information for the applications through
an interface. A network independent API is provided which enables applications to get network
topology information and per flow information. Netlogger [3] gives a detail logging of all the events
occurring during the execution of a distributed application. Authors of Congestion Manager (CM)
[1] show an effective way to adapt network applications based on a kernel module which enables
similar flows, between same source and destination, to share the network congestion information.
It allows applications to adapt by providing them with an API for querying the network status.
While CM tries to capture the adaptability concept within the kernel bounds, it puts the respon-
sibility of finding out the relevant network information upon the application. HARNESS [2] is a
distributed virtual machine system having the capability of supporting plug-ins for tasks like com-
munication, process control and resource monitoring [2]. Network Weather Service (NWS) [17],
monitors network behavior and shows that this information can be successfully used for scheduling
in distributed computational grid environments.

Our approach is different from these systems mainly in the scope of seamless interaction
with application at runtime. We concentrate on specifically providing the adaptive capabilities to
scientific distributed applications. Our results are rather application specific but the framework
is general enough to be used with scientific applications having alternating computation commu-
nication characteristics. In [7], authors show dynamic adaptation of Jacobi-Davidson eigen solver
based on the memory thrashing competing applications and CPU based loads. Their approach is
similar to our approach but they do not yet address the network interface related issues. Decoupling
of network information collection from the application execution and providing a mechanism to
encapsulate application adaptations are the main features of NICAN. The developed tool is light
weight to complement high computation and memory demands of large-scale scientific application.

3 Providing dynamic network information to applications

A major design goal is to augment the application execution with the knowledge of the network
while requiring minimum modifications of the application and without involving the user/programmer
into the network development effort. Indeed, the network information collector should have a neg-
ligible overhead and not compete with application for resource usage. This design requirement, is
especially vital since we target high-performance distributed applications which often demand full
capacity of computer resources.

The NICAN accepts the request from the application and delivers the obtained network char-
acteristics to the application. This enables supplying an application with the network information
only if this information becomes critical, i.e., when the values for the network characteristics to
be observed fall outside of some feasible bounds. The feasibility is determined by an application
and may be conveyed to the network information collector as parameter. This selective notification
approach is rather advantageous both when there is little change in the dynamic network charac-
teristics and when the performance is very changeable. In the former case, there is no overhead
associated with processing unnecessary information. In the latter, the knowledge of the network
may be more accurate since it is obtained more frequently. Multiple probes of the network are
recorded to estimate the network performance over a longer period of time. They may also be use-
ful for the prediction of network performance in such common cases as when an iterative process
lies at the core of application.

In NICAN, the process of collecting the network information is separated from its other
functions, such as notification, and is encapsulated into a module that can be chosen depending on
the types of the network, network software configuration, and the information to be collected. For
example, assume that the current throughput is requested by an application during its execution.
Then, if the network has the Simple Network Management Protocol (SNMP) [8] installed, NICAN

will choose to utilize the SNMP information for throughput calculation. Otherwise, some bench-
marking procedure — more general than probing SNMP but also more costly — could be applied
to determine the throughput. To determine the latency between two hosts, the system utilities
such as ping and traceroute can be used. NICAN collects latency independently of throughput.
Whenever a network parameter value becomes available, NICAN processes it immediately without
waiting for the availability of the other parameter values. Delaying the processing would cause the
excessive overhead for NICAN and would lead NICAN to notify an application with possibly obso-
lete or wrong data. Figure 1 shows a modular design of NICAN/application interface. The NICAN
implementation consists of two parts, the NICAN front end and the NICAN back end. NICAN
front end provides for the application adaptation and the NICAN back end performs the network
data collection. The application starts the NICAN back end by invocation of the NICAN back
end thread. NICAN back end thread consists of separate threads for collecting different network
parameters. Note that for simplicity NICAN does not attempt to perform a combined parameter
analysis: each network parameter is monitored and analyzed separately from others. The modular
design, shown in Figure 1, enables an easy augmentation of the collection process with new options,
which ensures its applicability to a variety of network interconnections.

Figure 1 shows that the application starts the NICAN back end thread and passes the moni-
toring request to the NICAN informs the application about the changes in the network conditions
in a timely fashion such that there is no instrumenting of an application with, say, call-queries
directed to the network interface. In fact, the initialization of the NICAN tool may be the only non-
application specific modification required in the application code to interface with NICAN. Upon
the notification from the NICAN the application may need to engage its adaptive mechanisms. To
minimize changes inside the application code, we propose to encapsulate application adaptation
in a notification handler invoked when NICAN informs the application about the changes in the
network conditions. This handler can contain an adaptation code with a possible access to some
application variables. NICAN front end also provides for preparing the execution environment for
better application execution by dynamically selecting relatively less loaded nodes from amongst
the pool of nodes. A more detailed description of NICAN design and implementation can be found
in [4].

For a distributed application that uses Message Passing Interface (MPI), the communication
overhead also includes the overhead for MPI. Since most of the high performance computing appli-
cations use MPI to ensure portability across distributed environments, measuring and monitoring
the MPI overheard may be useful for performance tuning. NICAN provides a way to interact with
MPI-based distributed applications.

4 Distributed sparse linear system solution

Among the techniques for solving large sparse linear systems is a recently developed Parallel Al-
gebraic Recursive Multilevel Solver (pARMS) [5]. This is a distributed-memory iterative method
(see, e.g., [9] for the description of modern iterative methods) that adopts the general framework
of distributed sparse matrices and relies on solving the resulting distributed Schur complement
systems [10]. pARMS focuses on novel linear system transformation techniques, called precondi-
tioning [9], which aim to make the system easier to solve by iterative methods. In particular,
PARMS combines a set of domain decomposition techniques [12], frequently used in parallel com-
puting environments, with multi-level preconditioning [16], which leads to a scalable convergence
process with increase in problem size.

An iterative solution method can be easily implemented in parallel, yielding a high degree
of parallelism. Consider, for example, a parallel implementation of FGMRES [5], a variation of a
popular solution method, restarted Generalized Minimum RESidual algorithm (GMRES) [9]. If the
classical Gram-Schmidt procedure is used in its orthogonalization phase, an iteration of the parallel
algorithm has only two synchronization points, in which all-to-all processor communications are
incurred.

NICAN front end Node
throughput repare environment
calculation prep -
(thread) for application
NICAN : - senaapﬁﬂ lcat(on Application
back end i request to NICAN;] starts
(thread) | _backend 1
if critical
NICAN | |
' application specific
. adaptation
Application
latency continues
calculation
(thread)
history data
collection

Fig. 1. Overview of NICAN design

One way to partition the linear system Az = b is to assign certain equations and correspond-
ing unknowns to each processor. For a graph representation of sparse matrix, graph partitioner
may be used to select particular subsets of equation-unknown pairs (sub-problems) to minimize
the amount of communication and to produce sub-problems of almost equal size. It is common
to distinguish three types of unknowns: (1) Interior unknowns that are coupled only with local
equations; (2) Inter-domain interface unknowns that are coupled with both non-local (external)
and local equations; and (3) External interface unknowns that belong to other sub-problems and
are coupled with local equations. Thus each local vector of unknowns z; is reordered such that its
sub-vector u; of internal components is followed by the sub-vector y; of local interface components.
The right-hand side b; is conformly split into the sub-vectors f; and g; , i.e.,

() 2= (1)
! vi) ' g9i)

When block-partitioned according to this splitting, the local matrix A; residing in processor ¢ has
the form

so the local equations can be written as follows:

(% &) () (sonrm) = (1)

4

Here, N; is the set of indices for sub-problems that are neighbors to the sub-problem ¢. The term
E;;y; reflects the contribution to the local equation from the neighboring sub-problem j. The result
of the multiplication with external interface components affects only the local interface unknowns,
which is indicated by zero in the top part of the second term of the left-hand side.

5 Integration of network information into pARMS

The iterative nature of the pARMS execution process is a typical example of most distributed
iterative linear system solutions. In each iteration, local computations are alternated with the data
exchange phase among all neighboring processors following the pattern of sparse matrix-vector
multiplication. This pattern is preserved if a domain decomposition type preconditioner (see e.g.,
[12]) is used. For such a preconditioner, it is possible to change the amount of local computations in
each processor depending on local sub-problem or computing platform characteristics. For varying
sub-problem complexity, this issue has been considered in [11] and extended to encompass unequal
processor loads in [14]. It has been shown that performing more local iterations in the less loaded
processors and thus computing a more accurate local solution would eventually be beneficial for the
overall performance. In other words, the accuracy would eventually propagate to other processors,
resulting in a reduction of the number of iterations to converge. Here we describe how, with the
information provided by NICAN, these adaptations can be carried out based on the changing
network conditions.

PARMS uses MPI for communication between participating processors. The rendezvous of all
the peers might not be at the same time since each processor might have a different computational
load or incur delays in sending or receiving data on its network interface resulting in low network
interface throughput. Thus, the knowledge of how busy the processor is and how much network
interface throughput is available for the processor communications can help in devising adaptation
strategies for pARMS.

5.1 Adaptation of pARMS based on network condition

If the local computations are balanced, then each processor completes its local computations and
then waits, at a communication rendezvous point, for others to complete. Consider what happens
after the first exchange of data. The processor which has more network interface throughput
available for communication would complete its data transfer earlier relative to the other processors.
Therefore this processor will start (and finish) its local computations early and incur an idle time
waiting for the other processors. For a distributed iterative linear system solution performed on
two processors, Figures 2 and 3 depict, respectively, the ideal scenario of balanced computations
and communications and a scenario in which Processor 1 has a low network interface throughput.
Instead of idling, Processor 2 can perform more local computations to obtain a more accurate
solution and arrive at the rendezvous point later.

PARMS source code is instrumented with an initialization call for NICAN after the initial-
ization of MPI. Within this function call the parameters to be monitored are passed. We have used
network interface throughput as the parameter, and the notification criterion is set to reporting
global maximum achieved throughput and local achieved throughput only when their values differ
substantially. Note that a large, relative to the link nominal bandwidth, value for the achieved
throughput would indicate reaching the capacity of the network interface and would lead to com-
munication delays.

After NICAN initialization, pARMS continues its normal operation. NICAN, on the other
hand, starts monitoring the achieved throughput for each processor using the SNMP protocol.
Then the maximum achieved throughput is computed by NICAN among all the participating
processors without interfering with pARMS communication or computation tasks. Upon meeting
the notification condition, the values obtained for the global maximum and local throughput are
signaled to the local application process and passed to the respective notification handler.

Local

Computation

Communication

Loca

Computation

Time

Local
Computation

Communication

Local 7=

Computation

Node 1 Node 2
Local

Computation
Time

Communication

Local
Computation

Idle Time

Fig. 2. Ideal scenario: Balanced computations and commu- Fig. 3. A more realistic scenario: Balanced computations

nications

and unbalanced communications

The user may incorporate a desired adaptation strategy into the notification handler, thus
avoiding direct changes to the application source code. If certain application variables need to be
adjusted in response to the network performance, they can be shared with the handler, which
contains the adaptation code. For example, when the pARMS adaptation consists of adjusting the
number of local iterations n’ in the preconditioner application on processor i, the variable n! is
shared with the handler local to processor .

Algorithm 5.11 outlines a procedure of incorporating adaptive features in pARMS using
NICAN. For both sets of experiments, we construct a rather simple notification handler which,
upon invocation, changes the value of a shared variable n‘""" depending on which experiment is

performed.

ALGORITHM 5.11 Incorporating adaptive features in pARMS using NICAN

in pARMS:

G oo =

in NICAN:

1. Start handler when application is notified

2. If (adaptation condition for experiment set One)
3. ninner — pinner o constant;

4. If (adaptation condition for experiment set Two)
5. pinmer — pinner o variable;

6. End handler.

Declare n'™™e" = n’ as shared between pARMS and NICAN.
Start pARMS outer iteration
Do pARMS ni™™¢" inner iterations;
Exchange interface variables among neighbors;
End pARMS outer iteration.

The time T, each node i spends in a communication phase may be determined knowing the
current achieved throughput 7¢ and the amount of data D? to be communicated. The throughput
for each node is calculated using SNMP. The amount of data D! to be communicated is readily
available from one of the pARMS data structures in each node. (The value of D? is made accessible

via the adaptation handler as well.) Specifically, T.% is computed as follows:

. Di
=g

where B? is the link nominal bandwidth, the difference of which with 7¢ gives the throughput
available for the communication of data D!. This formula will give us the time required for com-
municating D! data values for the node. Among the neighbors the node having the largest value
for this time will have the maximum usage of the network interface reflecting the competing net-
work process running on that node. The maximum communication time T, over all the nodes
is calculated. The adjustment of the local iteration number is similar to the strategy proposed in
[11]. In the (next) jth outer iteration of the iterative process

i i i
n; =nj_q +Aj,

where A;, the number of iterations that node 7 can fit into the time to be wasted in idling otherwise
at the jth outer iteration, is determined as follows:

Ai _ (Tmax - Tci) (1)
i T i i
Tc + Tzcomp
where Ticam,, is the computation time per iteration in node i. The computation time Ticom,, varies
more as convergence approaches. This is because the preconditioning time required at different
phases of computation depends upon the characteristics of the matrix to be preconditioned (number
of non-zero elements, amount of fill-in).

6 Experiments

We present two sets of experiments to demonstrate a seamless incorporation of adaptations into
PARMS using NICAN on high performance computing platform and to show that the adaptations
based on the communication waiting time enhance overall performance of the application.

6.1 Adaptations for a regularly structured problem on IBM SP

The first set of experiments was conducted on the IBM SP at the Minnesota Supercomputing
Institute using four WinterHawk+ nodes (375 MHz Power3 node) with 4 GB of main memory.
Although each WinterHawk+ node has four processors, only one processor per node was used
in the experiments. All the nodes run the AIX operating system version 4. They use a switch
having peak bi-directional bandwidth of 120 MBps between each node for communication. The
problem, defined in [14], is as follows: “The problem is modeled by a system of convection-diffusion
partial differential equations (PDE) on rectangular regions with Dirichlet boundary conditions,
discretized with a five-point centered finite-difference scheme. If the number of points in the 2 and
y directions (respectively) are m, and my, excluding the boundary points, then the mesh is mapped
to a virtual p, x p, grid of nodes, such that a sub-rectangle of m,/p, points in the z direction
and my/p, points in the y direction is mapped to a node. Each of the sub-problems associated
with these sub-rectangles is generated in parallel. This problem is solved by FGMRES(100) using
a domain decomposition pARMS preconditioning. The combining phase uses Additive Schwarz
procedure” [14]. To make the problem challenging for this computational environment, we consider
the convection term of 2,400 for this system of PDEs.

To trigger pARMS adaptation, the amount of the time T, spent in communications has
been considered in each node. Specifically, we use the criterion that the T.° normalized over the
previous w outer iterations, called the window size, be nonzero. When this condition is met the

number of inner iterations are increased by a constant value called dynamic addition value. The
rationale behind using this criteria is that if a node shows waiting time in this iteration then it is
more likely for it to show waiting time in the subsequent iteration. Also experimental observations
for the waiting times for non adaptive runs showed that the waiting times are incurred in chunks
with phases showing waiting times and phases showing no waiting times. Thus a rather simplistic
approach of observing the previous waiting time can be used to find out the possibility of next
waiting time.

Note that this criterion is local to a particular node and thus reflects only the interaction
among neighboring nodes, which is acceptable due to the regular partitioning of this problem among
the nodes, as shown in [14]. Otherwise NICAN may be used to exchange the global communication
time data as seen in the next set of experiment. Table 1 shows results of executing pARMS with
and without adaptation (column Adapt) on the IBM SP. In this experiment the window size w
used was three. The total number of outer pARMS iterations is shown in the column Quter Iter
followed by the total solution time Solution. Table 2 shows the total waiting time for each node.
R0, R1, R2, and R3 indicate the ranks of the nodes. In each table, the average values over several
runs are mentioned with the standard deviations shown in the brackets. Figure 4 plots the total
waiting times of the nodes.

Table 1. Adaptation based on the observation of previous waiting times: On IBM SP for PDE
problem

Adapt.| Outer Iter.| Solution, s

nj|yes/no
5| no 2,000 (0.0)|1,065.0 (30.33)
yes |713.3 (63.105)| 607.89 (100.0)

Table 2. Waiting Time for nodes: On IBM SP for PDE problem

Adapt. Tot. Wait., s

n}|yes/no RO R1 R2 R3
) no(111.5 (23.33)|50.5 (21.92)| 39.0 (18.38)| 75.0 (7.77)
yes| 56.3 (42.5)| 38.0 (13.0)|24.66 (11.23)|44.0 (36.29)

The effect of different dynamic addition values is seen in Figure 5, left. It is seen that increas-
ing the dynamic addition value (from 1 to 3) decreases the solution time. Figure 5, right shows that
increasing the window size (w = 10) also decreases the solution time. From these two figures it can
be concluded that either increasing the window size or increasing the dynamic addition value for
a particular window size reduces the total solution time on this platform. Increasing the window
size increases the amount of history information and thus helps in predicting more accurately the
possibility of the next waiting time for a node. The window size determines when the adaptations
are to be employed. The amount of dynamic addition determines the number of adaptations. For
a given window size increasing this value balances the nodes in their inner iteration phase thus
reducing the waiting time in the subsequent iterations and causing the reduction in the solution
time.

A better convergence of the system of PDEs with adaptations is explained by more computa-
tions at the inner-level Krylov solver per each outer iteration. With the pARMS preconditioning the

j j withoul adaptat'ion
with adaptation -------
140 | g
120 B
100 B
o
@
Iz
£
@
E 80 R
=
i=J
g
S
s
E 60 - B
40 E
20 B
0 L L L L
-1 0 1 2 3 4
Node
Fig. 4. Total Waiting time for nodes
1200 T 1200 T
W=3 —— W=10 ——
1000 Bl 1000 q
800 Bl 800 q
o 9
1] @
& &
£ £
@ o
E E
= =
E 600 - 1 .5 600 - 1
3 E
S S
2] a
el g
<] 5
= [
400 [g 400 q
200 Bl 200 q
0 | | 0 | | |
0 0.5 1 15 2 25 3 0 5 10 15 20
Dynamic Addition Dynamic Addition

Fig. 5. Total time reduction for different dynamic additions: window sizes 3 (left) and 10 (right)

linear system is solved level by level and at the last level the system is solved using ILUT-FGMRES
[9]. By using this strategy of observing the previous waiting time for a node and increasing the
number of iterations for this last level solution step helps in engaging the node for more time so that
it arrives at the rendezvous point later. The nodes showing waiting time are considered “faster”
nodes as compared to other nodes. More local computations on nodes with “faster” communica-
tions result in the generation of more accurate local solutions per outer iteration. Upon exchange
in the subsequent communication phases, this accuracy propagates to other nodes resulting in a
better convergence overall. The total execution time is decreased also due to reducing of the wait-
ing times in each outer iteration for the nodes. Consider the total waiting times in Table 2. It is
seen that, with dynamic adaptation, the total waiting time has decreased in all the cases. Load
balance is achieved in terms of total waiting time incurred by each node. Without adaptation the
total waiting time for all the nodes show a large range. With adaptation, however, this range is
narrowed.

6.2 Adaptations for irregularly structured problem on IBM SP

For the second set of experiments the problem used is taken from the field of Magnetohydrodynamic
(MHD) flows. The problem as described in [5] is as follows: “The flow equations are represented as
coupled Maxwell’s and the Navier-Stokes equations. We solve linear systems which arise from the
Maxwell equations only. In order to do this, a pre-set periodic induction field is used in Maxwell’s
equation. The physical region is the three-dimensional unit cube [—1,1]® and the discretization
uses a Galerkin-Least-Squares discretization. The magnetic diffusivity coefficient is n = 1. The
linear system has n = 485,597 unknowns and 24,233,141 nonzero entries. The gradient of the
function corresponding to Lagrange multipliers should be zero at steady-state. Though the actual
right-hand side was supplied, we preferred to use an artificially generated one in order to check the
accuracy of the process. A random initial guess was taken” [5]. For the details on the values of the
input parameters see [5].

The data transfer phase in pARMS is timed to obtain the communication time T,'. The
formula for dynamic incrementing of the number of inner iterations shown in Section 5 equation
(1) is used. Table 3 and Table 4 show that with adaptations the solution time has decreased with a
corresponding decrease in the total waiting times of the nodes. Figure 6 plots the total waiting time
for all the nodes. Comparing this figure with Figure 4 it can be concluded that since this problem
is irregular, the overall balance in the waiting time of the nodes is not achieved. The differing time
spent by each node in the preconditioning computation phase makes it difficult for the waiting time
to balance for all the nodes though decrease in the waiting time for individual node is observed.
Even though the problem is harder and non uniform as compared to the problem in experiments
of subsection 6.1, the adaptation strategies are seen to be as useful as in the previous case.

Table 3. Adaptation based on global communication time on the IBM SP for MHD problem

Adapt.|Outer Iter.| Solution, s
n}|yes/no
5| no 41 (0.0) |1,021.3 (28.42)
yes | 34.5 (0.707) | 781.53 (13.03)

7 Conclusion

We have proposed a framework for a distributed scientific application to learn and make use of
dynamic network information through notification handlers mechanisms. The framework is imple-

10

Table 4. Waiting time for nodes: On the IBM SP for MHD problem

Adapt. Tot. Wait., s

n}|yes/no RO R1 R2 R3

5| mno [316.0 (67.88)[570.0 (147.78)|284.0 (195.0)(15.5 (2.12)
yes |41.5 (14.85) | 413.0 (16.97) | 46.0 (14.14) (16.5 (6.36)

600

T T
without adaptation
with adaptation -------

400

300

Total Waiting Time in sec

200

100 -

L L L
-1 0 1 2 3 4
Node

Fig. 6. Total Waiting time for: MHD problem

mented in a network information collection tool that is lightweight and requires little modifications
to the user application code. The proposed framework is rather flexible since a variety of adap-
tation strategies can be used in a notification handler. Our network information collection tool is
capable of expanding beyond existing data collecting strategies due to its modular design. The ex-
periments show that there is an improvement in the solution time by about 43% with adaptations
based on measuring previous waiting time of a node. The adaptations based on peer communi-
cation time show an improvement of about 23% as compared to non-adaptive case. Applications
having pARMS like behavior can benefit from such adaptations.

Ability of NICAN to accurately capture the data transfer phase of a scientific distributed
application can be enhanced by using per flow analysis. With per flow analysis NICAN will be
able to correctly identify the exact start and end of the data transfer phase of the application. It
would be very useful if the exact monitoring of the packets of a particular application could be
done. Using such monitoring the exact time instant of these packets leaving the network interface
can be found out. With more accurate throughput information it will be possible to accurately
calculate the number of dynamic additions which can be employed. Thus with this approach an
added amount of monitoring, along with using SNMP, can be provided to the application.

Another area in which this research can grow is that of developing a generalized framework
for resource monitoring requests. An approach using eXtensible Markup Language (XML) is being

11

tried out to allow the application to issue generalized network parameter monitoring requests. Also
monitoring tools for non-IP based networks can be developed.

References

1.

11.

12.

13.

14.

15.

16.

17.

o ©w

D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan. System support for bandwidth
management and content adaptation in internet applications. In Proceedings of 4th Symposium on Op-
erating Systems Design and Implementation San Diego, CA, October 2000. USENIX Association.:213—
226, 2000.

. J. Dongarra, G. Fagg, A. Geist, and J. A. Kohl. HARNESS: Heterogeneous adaptable reconfigurable

NEtworked systems. pages 358-359, citeseer.nj.nec.com/327665.html, 1998.

. D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. Netlogger: A toolkit for distributed system

performance analysis. In Proceedings of the IEEE Mascots 2000 Conference, 2000.

. D. Kulkarni and M. Sosonkina. Using dynamic network information to improve the runtime perfor-

mance of a distributed sparse linear system solution. Technical Report UMSI-2002-10, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2002. accepted in VECPAR
2002.

. Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recursive multilevel

solver. Technical Report UMSI-2001-100, Minnesota Supercomputer Institute, University of Minnesota,
Minneapolis, MN, 2001.

. B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok. A resource query

interface for network-aware applications. Cluster Computing, 2:139-151, 1999.

. Richard Tran Mills, Andreas Stathopoulos, and Evgenia Smirni. Algorithmic modifications to the

jacobi-davidson parallel eigensolver to dynamically balance external cpu and memory load. In Pro-
ceedings of the International Conference on Supercomputing 2001, Sorrento, Italy, pages 454-463, June
18-22, 2001.

. NET SNMP project. Web Site, http://net-snmp.sourceforge.net/.
. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York, 1996.

Y. Saad and M. Sosonkina. Distributed Schur Complement techniques for general sparse linear systems.
SIAM J. Scientific Computing, 21(4):1337-1356, 1999.

Y. Saad and M. Sosonkina. Non-standard parallel solution strategies for distributed sparse linear
systems. In A. Uhl P. Zinterhof, M. Vajtersic, editor, Parallel Computation: Proc. of ACPC’99, Lecture
Notes in Computer Science, Berlin, 1999. Springer-Verlag.

B. Smith, P. Bjgrstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, New York, 1996.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The complete Reference,
volume 1. The MIT Press, second edition, 1998.

M. Sosonkina. Runtime adaptation of an iterative linear system solution to distributed environments.
In Applied Parallel Computing, PARA 2000, volume 1947 of Lecture Notes in Computer Science, pages
132-140, Berlin, 2001. Springer-Verlag.

M. Sosonkina and G. Chen. Design of a tool for providing network information to distributed appli-
cations. In Parallel Computing Technologies PACT2001, volume 2127 of Lecture Notes in Computer
Science, pages 350-358. Springer-Verlag, 2001.

C. Wagner. Introduction to algebraic multigrid - course notes of an algebraic multigrid. University of
Heidelberg 1998/99.

Richard Wolski. Dynamically forecasting network performance using the network weather service.
Cluster Computing, 1(1):119-132, 1998.

12

